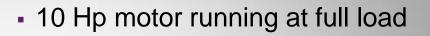
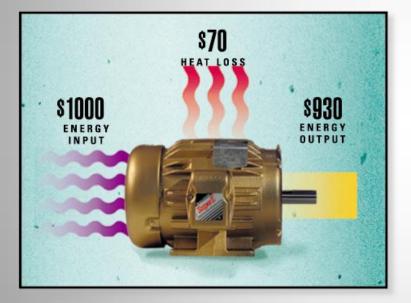


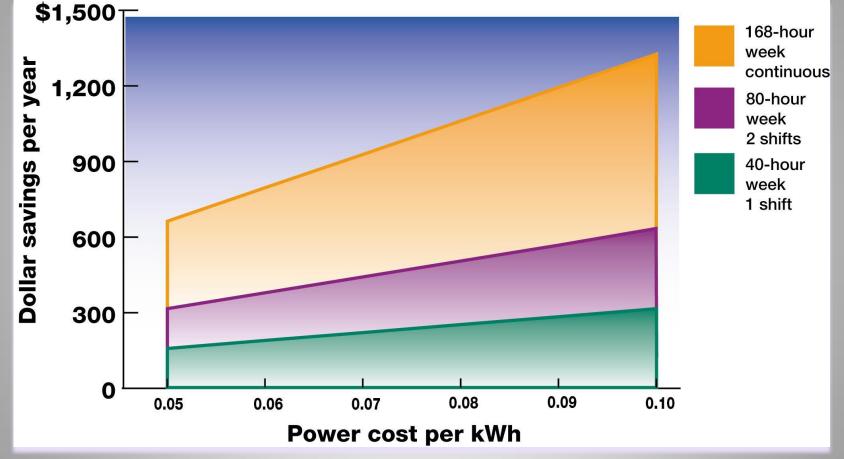
Energy Savings through the use of Baldor Variable Speed Drives & Motors




How Do I Accomplish Energy Savings?

 You save energy by improving the overall efficiency of the driven system. There are many energy wasters within a given system, but one component that should always be checked is the power input side or the electric motor.

Why is Motor Efficiency Important? Wasted Energy \$



- Measured Power in 8,025 Watts
- Power out = 10 Hp x 746 = 7460 Watts
- Efficiency = Power Out / Power In
- Efficiency = 7460 / 8025
- Efficiency = .930 or 93.0%

What is Higher Efficiency Worth? Even a 4.5 point efficiency gain is important.

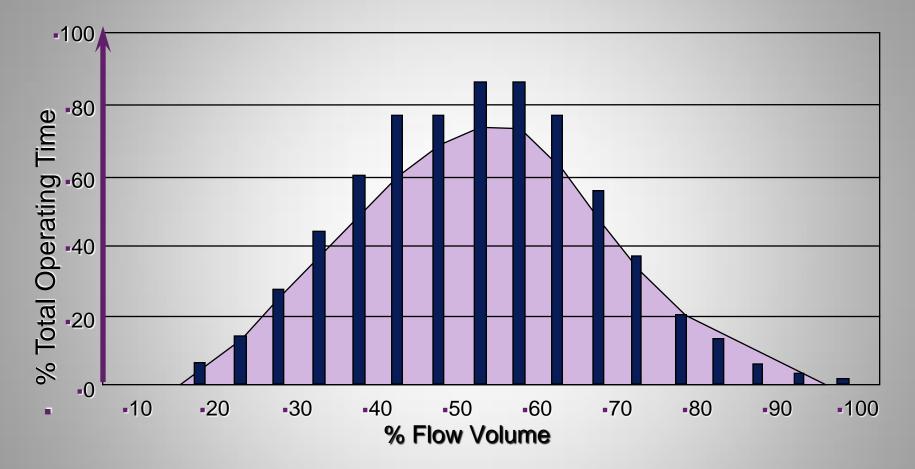
40 HP Super-E with 94.5% efficiency compared to standard motor with 90% eff.Operating 50 weeks/year

Basic Motor Calculations

Annual Motor Operating Cost

- To find the annual operating cost of one motor (HP * .746Watt/HP * %ML * Hours * ¢/kWh) / Efficiency
- To find the annual operating cost difference between two motors (HP * .746Watt/HP * %ML * Hours * c/kWh) / {1/(E_{new} E_{old})}

•%ML = percent motor load, Hours = annual operating hours, E = efficiency



Few applications Require 100% Pump and Fan Flow Continuously

- Systems are designed for worst case
 - Emergency conditions require higher volumes
- They are sized up to next rating
 - Multiplying safety margins
- System Demand Changes
 - Weekend and Night Time Occupancies are lower

Typical Duty Cycle – Centrifugal Fan

-Source: Electric Power Research Institute

Affinity Laws for Centrifugal Loads

Speed	Volume	Pressure/ Head	Horsepower Required
 100% 90% 80% 70% 60% 	 100% 90% 80% 70% 60% 	 100% 81% 64% 49% 36% 	 100% 73% 51% 34% 22%
 50% 40% 30% 	 50% 40% 30% 	 25% 16% 9% 	 13% 6% 3%

Energy Savings Opportunity

 Centrifugal loads, such as pumps and fans, offer the greatest energy savings potential when less than 100% flow or pressure conditions are required.

Electrical Energy Costs •100% Speed •100% Load

100 HP Induction Motor

 $(100 \text{ HP})x(\frac{1}{95\% \text{ eff}})x(.746 \text{ kW})x(.08 \text{ kWh})x(12 \text{ H/Day})x(360 \text{ D/Year}) =$ \$27,139 per year!

Electrical Energy Costs •60% Speed

-22% HP

100 HP Induction Motor

 $(100 \text{ HP})x(0.22) \left(\frac{1}{95\% \text{ eff.}}\right)x(.746 \text{ kW}_{\text{HP}})x(.08 \text{ kWh})x(12 \text{ H/Day})x(360 \text{ D/Year}) = $5,970 \text{ per year}!$

Annual Electrical Energy Savings

100% Speed \$27,139 60% Speed \$5,970

\$21,169 per year!!

Reduced Flow May be accomplished via several methods:

- Changing Motor and/or Equipment
 - Fan belts
 - Motor base speed
 - Pump Impeller
 - Blade pitch
- Inlet Guide Vanes
- Pump Valves
- Variable Frequency Drive (VFD) only method to take advantage of affinity laws

